Image

Artificial Intelligence Guided Echocardiographic Screening of Rare Diseases (EchoNet-Screening)

Recruiting
18 years of age
Both
Phase N/A

Powered by AI

Overview

Despite rapidly advancing developments in targeted therapeutics and genetic sequencing, persistent limits in the accuracy and throughput of clinical phenotyping has led to a widening gap between the potential and the actual benefits realized by precision medicine.

Recent advances in machine learning and image processing techniques have shown that machine learning models can identify features unrecognized by human experts and more precisely/accurately assess common measurements made in clinical practice.

The investigators have developed an algorithm, termed EchoNet-LVH, to identify cardiac hypertrophy and identify patients who would benefit from additional screening for cardiac amyloidosis and will prospectively evaluate its accuracy in identifying patients whom would benefit from additional screening for cardiac amyloidosis.

Description

Despite rapidly advancing developments in targeted therapeutics and genetic sequencing, persistent limits in the accuracy and throughput of clinical phenotyping has led to a widening gap between the potential and the actual benefits realized by precision medicine. This conundrum is exemplified by current approaches to assessing morphologic alterations of the heart. If reliably identified, certain cardiac diseases (e.g. cardiac amyloidosis and hypertrophic cardiomyopathy) could avoid misdiagnosis and receive efficient treatment initiation with specific targeted therapies. The ability to reliably distinguish between cardiac disease types of similar morphology but different etiology would also enhance specificity for linking genetic risk variants and determining mechanisms

Recent advances in machine learning and image processing techniques have shown that machine learning models can identify features unrecognized by human experts and more precisely/accurately assess common measurements made in clinical practice. In echocardiography, this ability for precision measurement and detection is important in both disease screening as well as diagnosis of cardiovascular disease.

Echocardiography is routinely and frequently used for diagnosis and prognostication in routine clinical care, however there is often subjectivity in interpretation and heterogeneity in application. Human attention is fatigable and has heterogenous interpretation between providers. AI guided disease screening workflows have been proposed for rare diseases such as cardiac amyloidosis and other diseases with relatively low prevalence but significant human impact with targeted therapies when detected early. This is an area particularly suitable for AI as there are multiple mimics where diseases like hypertrophic cardiomyopathy, cardiac amyloidosis, aortic stenosis, and other phenotypes might visually be similar but can be distinguished by AI algorithms. The investigators have developed an algorithm, termed EchoNet-LVH, to identify cardiac hypertrophy and identify patients who would benefit from additional screening for cardiac amyloidosis, hypertrophic cardiomyopathy and other diseases. E

Eligibility

Inclusion Criteria:

  • Patients who have a high suspicion for cardiac amyloidosis by AI algorithm

Exclusion Criteria:

  • Patients who decline to be seen at specialty clinic
  • Patients who have passed away

Study details

Cardiac Amyloidosis

NCT05139797

Cedars-Sinai Medical Center

4 July 2025

Step 1 Get in touch with the nearest study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.