Image

Ultrahigh-frequency Ultrasonography (UHFUS) in Detection of Small Pulmonary Ground Glass Opacity (GGO)

Recruiting
years of age
Both
Phase N/A

Powered by AI

Overview

The purpose of this study is to assess the feasibility of UHFUS on detection of GGOs in excised lung tissue and investigate UHFUS features of GGO in vitro.

Each GGO was detected by palpation, UHFUS and open biopsy in sequence. The comparison of detection rate and time consumption were analyzed respectively. The Bland-Altman analysis was used to estimate the agreement of tumor size measured by CT, UHFUS and pathology.

Description

Lung cancer (LC) is a leading cause of mortality worldwide. According to the International Agency for Research (IARC) on Cancer, LC was projected to contribute to 2.3 million new cancer cases and 1.8 million deaths worldwide in 2020. With widespread use of chest computed tomography (CT), LC is increasingly detected at an early stage, in which 63%-95% lesions present as ground glass opacity (GGO).

GGO refers to a non-specific radiological appearance, referring to a focal, hazy shadow with increased attenuation that does not obscure the contours of bronchi or blood vessels on CT. It can be benign lesions, preinvasive, or invasive adenocarcinoma. Surgery is the main treatment for suspected malignant GGOs. Whether excised targeted GGOs thoroughly affects patients' prognosis crucially, especially for patients with multiple GGOs. Generally, the most frequent intraoperative location approach of pulmonary nodules is palpation, which distinguished by the texture between normal lung tissue and nodules. However, different from solid nodules, the texture of GGO nodules is similar to lung parenchyma that increases the difficulty of palpation localization. Thus, detection of GGOs and in lung tissue poses a common challenge, particularly in the presence of pure GGO (tumor without an solid component) and small GGO nodules (≤1cm).

In the current clinical practice, even with preoperative localization (CT-guided percutaneous and intraoperative electromagnetic navigation bronchoscopy), it remains challenging to confirm complete resection of all small, pure GGOs. Therefore, there is an urgent need for a new method that can accurately evaluate nodules in excised lung tissue. Since Roberto used thoracoscopic ultrasound (TUS) to examine pulmonary nodules in 1999, subsequently, several studies have validated the safety and efficacy for using US in identifying pulmonary nodules intraoperatively. However, past research all focused on solid nodules or large nodules (maximum diameter more than 2cm) using 5-12MHz US transducer. Few studies have studied the detection rate of small GGO nodules.

Previous studies have found 12MHz of US probe could show pulmonary nodules better than 5MHz and 7.5MHz. Ultrahigh frequency ultrasound (UHFUS) refers to higher frequency (≥20MHz) ultrasound waves with higher resolution even less than 50μm. It is capable to display nodules less than 3mm distinctively in the extremely superficial tissue, which may satisfy intraoperative GGO imaging requirement. Therefore, the objects of this study are to assess the feasibility of localizing GGOs in excised lung tissue by UHFUS and further summarize its UHFUS features.

Eligibility

Inclusion Criteria:

  1. Patients with targeted nodules identified as lesions required surgical removed such as main lesion and high-risk nodules;
  2. Patients who accept VATS or RATS resection.

Exclusion Criteria:

  1. Patients refused enrollment in the trial;
  2. Pulmonary nodules were labelled during the operation.

Study details

Lung Nodules, Ultrasound, Detection Rate

NCT05994898

Peking Union Medical College Hospital

20 March 2024

Step 1 Get in touch with the nearest study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.